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We investigate the corner spin magnetization of two-dimensional ferromagnetic 
Ising models in various wedge geometries. Results are obtained for triangular 
and square lattices by numerical studies on finite wedges using the star-triangle 
transformation, as well as analytic calculations using corner transfer matrices 
and a fermionic representation of the row-to-row transfer matrix. The corner 
magnetizations vanish at the bulk critical temperature T c with an exponent tic 
differing from the bulk exponent. For isotropic systems with free edges we find 
that tic is given simply by tic = ~r/20, where 0 is the angle at the corner. For apex 
magnetizations of conical lattices we obtain the strikingly similar result 
fla = ~r/40. These formulas apply equally well to anisotropic lattices if the angle 
0 is interpreted as an effective angle, 0 elf, determined by the relative strengths of 
the interactions. 
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1. INTRODUCTION 

In a recent paper, Cardy (1) has demonstrated how continuously varying 
critical exponents can arise on purely geometrical grounds. He studied a 
magnetic system in d dimensions bounded by two ( d -  1)-dimensional hyper- 
planes which meet at an angle O. Adopting a continuum model, he then 
showed that even within mean field theory critical exponents depend upon 
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the angle 0. In fact, calculating the spin correlation function at T C in this 
approximation corresponds to a well-known electrostatic problem: to find the 
potential distribution between metallic planes forming a wedge. (z) The 
exponent t/ describing the decay (at the bulk critical temperature Tc) of the 
correlation function between a spin near the edge and one in the interior is 
then given by r /=  z~/0. Similarly, the spontaneous magnetization near the 
edge varies at T C with exponent fl~ = 1/2 + zr/20. This behavior is physically 
quite plausible since a narrow wedge makes it harder for the system to 
maintain order, thus leading to a low value of the magnetization. 

While Cardy went on to show that these features are maintained in an e 
expansion around d = 4 ,  we shall in this paper investigate the other 
interesting situation, d---2. Here the edge becomes a corner and we shall 
study the behavior of the corner magnetization, m~, as a function of 
temperature, angle, lattice structure, and interaction parameters. To do so, 
three different methods will be used. 

We shall first calculate the corner magnetization for finite triangular 
lattices in the shape of an equilateral triangle with the boundary spins along 
one edge fixed. The basic technique consists of repeated applications of the 
star-triangle transformation ~3'4) to reduce the lattice to smaller and smaller 
sizes. This method was introduced by Hilhorst et al.(4) in their derivation of 
an exact renormalization group transformation of the triangular Ising model. 
More recently, the method has been used to study surface critical behavior in 
(triangular) Ising models with inhomogeneous couplings near the surface. (5'6~ 

In our calculation the corner magnetization of the infinite system and, 
in particular, its critical exponent, is obtained by a finite-size scaling analysis 
of the finite lattice data. By varying the coupling constants, we can cover 
various different cases including the square lattices with 45 ~ and 90 ~ corners. 
We find, indeed, pronounced angle dependence and also in certain cases a 
dependence on the (spatial) anisotropy of the coupling constants as predicted 
by Cardy. (1) From the data we are able to conjecture analytical expressions 
for/~c. These expressions can be further motivated by considering the decay 
of correlations in anisotropie triangular lattices. 

Our second method again begins with a triangular lattice but this time 
wrapped onto a cone. This geometry permits the use of corner transfer 
matrices, (7) which have proved particularly well suited for magnetization 
calculations. We find that the properties of such a "conical" system are very 
similar to those of a system with plane geometry. In particular, the exponent 
/~a, now referring to the apex magnetization of the cone, shows the same 
angle dependence. 

Finally, in Section 6, we turn to the square lattice with a 90 ~ corner and 
show how the corner magnetization can be calculated exactly using the 
conventional row-to-row transfer matrix. To simplify matters, we treat the 



Corner Magnetization in 2D Ising Models 499 

prob lem in the extreme aniso t ropic  ( H a m i l t o n i a n )  l imit.  The result  agrees 

with the numer i ca l  f indings.  

The paper  closes with a s u m m a r y  of  our  results.  

2. CORNER M A G N E T I Z A T I O N  A N D  S T A R - T R I A N G L E  
T R A N S F O R M A T I O N S  

Cons ide r  the t r i angu la r  lat t ice as shown in Fig. 1 and label  the sites of  
the latt ice by, 

R = me I + ne z --  (m, n)  (2.1) 

with rn = 0, 1, 2 ..... M,  n = 0, 1,..., m. The vectors e~ and  e 2 are latt ice vectors  

of  the t r i angu la r  lat t ice as or ienta ted  in Fig. 1. Let the spin at site (m, n)  be 
a(m, n) and  set 

a(M,n)=+l ,  n = 0, 1 , . . . ,M (2.2) 

The corner  magne t i za t ion  can  be defined by  

me(T)= l im mM(T) (2.3) 
M-~co 

where 

mu(T) = ~'~(0) (2.4) 

(0,0) __~ 

/ e ~  - (1,0) (1,1) / / 

,' ' ,  / / \ / 

,/ / ~ \\ 

(M-l,0)/ '  (M-1,11 

Fig. 1. Geometry of triangular wedge showing orientation of lattice vectors e I and %, and 
definition of coupling constants Ki(m , n). Spins along bottom edge of the wedge are frozen, 
while those along the other edges are free. 
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with 

qt(h) = In ~ exp[H~t + ho(0, 0)1 (2.5) 
[~rl 

h being a "corner" field coupling only to the spin in the corner. (As usual, 
we absorb a factor of - f l  = - 1 / k  s T into the definitions of H M and h.) 

Since our method of evaluating m M makes the nearest-neigbor 
interactions of the lattice both anisotropic and spatially dependent even if 
initially they are homogeneous and isotropic, we consider Hamiltonians of 
the form 

H M = ~ [Ka(m, n) tr(m, n) a(rn + 1, n) 
m = 0  n = O  

+ K2(m, n) a(m + 1, n) cr(m + 1, n + 1) 

+ Ka(m, n) o(m, n) a(m + 1, n + 1)] (2.6) 

Here the interactions around an "up" triangle with "top" vertex at (m, n) are 
denoted Ki(m, n), i --- 1, 2, 3, as defined in Fig. 1. Three special cases of (2.6) 
will be of particular importance: 

(i) Kl(rn, n) = Kz(m, n) = K3(m, n) = K (2.7) 

corresponding to an isotropic triangular lattice with a 60 ~ corner; 

(ii) Kl(m, n) = K3(m, n) = K, K2(m, n) = 0 (2.8) 

corresponding to an isotropic square lattice with a 90 ~ corner; and 

(iii) Kl(m, n) = K2(m, n) = K, K3(m, n) = 0 (2.9) 

which is again equivalent to a square lattice but with a 45 ~ corner. 
We shall compute mM(T ) iteratively by relating it to the corner 

magnetization of a lattice of side M -  1 but with modified couplings. The 
basic recursion is depicted (for M = 4) in Fig. 2. Three steps are involved 
based upon the star-triangle transformation. ~3'4) 

We firstly replace all "up" triangles by stars with nodes at the points 
(rn + 2/3, n + 1/3). For 0 ~ < m ~ < M - 2 ,  the interactions of the star are 
determined by the interactions of the triangle with "top" vertex at (m, n) and 
are given by 

p,(m, n) = g(Ki(m, n), Kj(m, n), Kk(m, n)) (i, j ,  k cyclic) (2.10) 
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4- 4. § 

§ § § + 

§ § + 4- 4- 

Fig. 2. Reduction of triangular wedge with M = 4 spins along each edge to one with M' = 3 
spins along each edge by use of star-triangle transformations. Note the "corner" field h 
coupling to the top vertex spin renormalizes to h'. 

where g(K, K', K") is defined in Appendix A. For m = M -  1, the transfor- 
mation simplifies since the last row of  spins is frozen. Hence we can set 

p 2 ( M -  1, n ) = K I ( M - -  1, n ) +  K 3 ( M -  1, n) (2.11) 

n = 0, 1,..., M - -  1 and maintain the frozen boundary condition. 
At this stage we have a sector of  the hexagonal lattice (see Fig. 2). We 

now sum out all spins on the original lattice at sites (m, n) to recover a 
triangular lattice with spins at sites 

R '  = m ' e  I + n ' e  2 = R - ( 2e  1 + % ) / 3  ( 2 . 1 2 )  

m'  = 0,1,  2,..., M - - 1 ,  n ' = 0 , 1 , 2  ..... m ' ,  couplings {K'(m',n')} and a 
corner field h ' ,  the lower boundary again being frozen. 

To explicitly determine the transformed couplings K i and corner field h '  
it is convenient to consider three cases. 

(i) "Bulk" sites--sum over a(m,n), l <~ m ~ M - 1 ,  l ~n<~ m - 1 .  
This involves a straightforward application of  the star-triangle transfor- 
mation (see Fig. 3a) and yields 

K~(m', n') = F[pl(m, n -- 1), Pz(m + 1, n), P3(m, n)] 

K;(m', n') =F[pz(m + 2, n + 1), p3(m + 1, n + i), pl(m + 1, n)] (2.13) 

K'3(m',n' ) = r[p3(m, n + 1), Pl(m, n), p2(m + 1, n + 1)] 

where m '  and n '  are related to m and n by (2.12) and F(p,p ' ,p")  is defined 
in (A.1). 

(ii) "Left" and "right" edges--sum over a(m,O) and a(m,m), 
m =  1,2 ..... M - - 2 .  These sums involve dedecorations (3) corresponding to 
degenerate star-triangle transformations with 

pl(m,--1) = P3(m, m + 1) = 0 (2.14) 
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(m-�89 {m-�89189 (rn'-l,n'-l) K-~(m'-2,n'-l)(m'-l,n') 

l~,n) ). ~.. .," 

(m+Z,n+�89 (m;n') 

h ~ 10,0) 

/ Pz(~176 

Fig. 3. Schematic representation of the star-to-triangle transformation for (a) an interior site 
of the hexagonal wedge and (b) the top vertex. 

h t 

The transformed couplings K~(m', 0) and K; (m', m') then follow from (2.13) 
with (2.14) imposed. 

(iii) Top corner--sum over ~(0, 0). In this case we have explicitly (see 
Fig. 3b) 

a =  :t: 1 

where a = o(0, 0), /~ 

exp{ [h + pz(0, 0)p]g} = ~0(h) exp(h'/t) (2.15) 

is the spin at R ' =  (0, 0), the top corner of the new 
lattice, 

and 

~0(h) = {2[cosh 2h + cosh 2p2(0, 0)]} '/2 (2.16) 

t cosh[h + P2(0, 0)] I 
h'  = �89 In (cosh[h - pz(O, 0)] (2.17) 

The Hamiltonians HM = HM{Ki(m, m)} and H M 1 = HM-I{K[(m', n')} 
satisfy 

~.exp[HM+ha(O,O)]=~o(h)e A ~ exp[H M ~+h 'p(0 ,0) ]  (2.18) 
[,x} {ul 

where A is independent of h and h'. Hence qJ~t(h) defined by (2.5) satisfies 

~UM(h ) = In ~0(h) +A + ~'M 1(h') (2.19) 
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from which we obtain 

mM({K}) = tanh[p2(O, 0)] mM_,({K' }) (2.20) 

This recurrence forms the basis of  our analysis of  the critical behavior. 
Iterating (2.20) gives 

M 
mM({K0}) = I ~  tanh[p~n( 0' 0)] (2.21) 

t=l  

where the original couplings {K0} are assumed given and p~n(0, 0) is the star 
coupling at site (0, 0) generated after t transformations. The iteration 
terminates when the last triangle is reduced to a single site whose spin is 
frozen to o = + 1 by our assumed boundary conditions. [The other solution, 
-m•({K}),  follows if the bot tom edge of  the lattice is frozen to - 1 . ]  

As mentioned in the Introduction our use of  the star-triangle transfor- 
mation is similar to that of  Hilhorst et al. (4) Indeed, (2.13) become their 
"star-tr iangle flow" equations if a continuum limit is taken. They are also a 
generalization to a more complex geometry of  the equations derived by 
Hilhorst and van Leeuwen (5) to study surface critical behavior in 
inhomogeneous lattices. As in that case, we can also take a continuum limit 

0.6 ~ . . . . .  ~ K=OS 

m H 

Fig. 4. 

~ .  K=04. 
0.4 

0.2 K 

i i i 

4 6 8 10 12 1/+ 16 18 
H 

Convergence of the magnetizations m M versus M for an isotropic triangular lattice 
(K] = K 2 = K 3 = K) with a 60 ~ corner. 
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obtaining differential equations for OK]St ~ K [ - - K  i. However, we have 
been unable to handle these equations because of the complex geometry. 
Consequently, we shall restrict our attention to numerical solutions of the 
recurrence relations for m M and numerical extrapolation to obtain m c and its 
critical behavior. 

For T sufficiently far away from To, m~({Ko} ) converges rapidly as M 
increases to a finite nonzero limit for T <  T C and to zero for T>/T~. 
Figure4 illustrates the convergence for a 60 ~ corner in an isotropic 
triangular lattice, the initial couplings K 0 being given by (2.7). As K 
approaches K c, the convergence deteriorates but the sequence can be easily 
accelerated (s) to yield improved limits. Applications of either the u transform 
of Levin t8'9) or the 0 algorithm (8'1~ reliably yield estimates of m~ that are 
accurate to at least three figures for ] T I T s - 1  t ~0 .01  given mM(T) for 
M~< 20. (These accelerators are defined in Appendix B.) 

The limiting functions are plotted in Fig. 5 for the three initial sets of 
coupling constants (2.7)-(2.9), corresponding to corners of 60 ~ 90 ~ and 
45 ~ respectively, on isotropic lattices. For comparison, we also show the 
surface magnetization for an isotropic square lattice (~1) corresponding to a 
180 ~ corner. 

nl c 

1-0 

0-8 

0.6 

0-4 

0-2 

o-~ & o16 o18 1-o 

Fig. 5. Corner magnetization. All curves are for isotropic lattices, the lattices and wedge 
angle being indicated. The curve labeled (180~ is the exact result for the surface 
magnetization.(11 
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3. CRITICAL BEHAVIOR 

Figure 5 already suggests that the corner magnetization exponent tic 
defined by 

mc(T ) ~ (1 - TITs) ~, T ~  T c -- (3.1) 

depends upon the angle 0 of the corner. More accurate estimates of tic can be 
made if we make use of finite-size scaling to extrapolate m~t(Tc), where T c is 
the critical temperature of the relevant (triangular or square) lattice. 

Finite-size scaling ~ asserts that if a thermodynamic quantity 
exhibits a singularity of the form (3.1) in the thermodynamic limit then for a 
finite system of linear dimension M 

mM(Tc) ~AM-~c/v[1 + O(M-~ (3.2) 

where v is the bulk correlation length exponent and the correction term arises 
from the leading subdominant scaling field, ~ which is also responsible 
for (nonsingular) corrections(15) to (3.1). 

For the d = 2 Ising model, v = l. Hence we can estimate tic from the 
limit of the sequence 

b M = M [ !  -rnM+~(Tc)/mM(Tc)]-*tic as M-~ ~ (3.3) 

Moreover, since it is believed ~ that there are no singular corrections in the 
d =  2 Ising model, one expects that (~3'14,17) a finite lattice estimator such as 
b M should have an asymp~-otic expansion of the form 

j = l  

The o(m -1) term is usually absent but arises here from the presence of free 
surfaces. (~3) 

The applicability of finite-size scaling and, in particular, the key results 
(3.2) and (3.4), to the corner magnetization is a crucial assumption for 
which we have no direct justification. Finite-size scaling and its predictions 
have been confirmed for surface quantities by exact calculations on the d = 2 
Ising model 08) and the spherical model. 09) Our numerical results certainly 
support (3.4) and lead us to believe that this application of finite-size scaling 
ideas is also valid. 

Table I lists values of b M (M~< 50) for the isotropic triangular lattice 
with a 60 ~ corner. These data were obtained by iterating the recursion 
relation (2.20) from an initial lattice consisting of M rows of triangles with 
all couplings set to K c = �88 In 3 = 0.2747 .... the critical coupling of an infinite 
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Table I. 
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Acceleration of Estimates for ~e for Isotropic 
Triangular Lattice with 60  ~ Corner 

Accelerations 

M b M alt-e alg. 0-a lg .  u-transform 

5 .86978 1.49317 1.50195 1.49930 
10 1.13326 1.49949 1.49972 1.49986 
15 1.24143 1.49993 1.49975 1.49995 
20 1.30036 1.49999 1.49987 1.49998 
25 1.33742 1.50001 1.49997 1.49999 
30 1.36288 1.50000 1.49999 1.49999 
35 1.38145 1.50000 1.50000 1.50000 
40 1.39559 1.50000 1.50000 1.50000 
45 1.40672 
50 1.41570 

triangular Ising model. For M =  50 this calculation involves in principle 
evaluating the partition function of  1250 spins, i.e., summing over more than 
10350 configurations! The star-triangle recursion relation reduces this 
computational task to such an extent that all values of  m M for fixed K and 
M = 2, 3,..., 50 can be generated in less than 5 minutes on a U N I V A C  1108. 

Despite this extensive range of lattice sizes, the sequence {bM} is very 
slowly convergent (see Table I). This convergence can, however, be improved 
by using standard sequence accelerators. (8'2~ Previous applications (2~) of 
such accelerators to finite-size scaling have been very successful with 
considerably less initial data than in this calculation. The actual accelerators 
we used are defined in Appendix B. The successive columns of  Table I were 
obtained by 

(i) one iteration of  the alternating ~ algorithm(S~ 

(ii) two iterations of  the 0 algorithm(8'1~ 

(iii) three iterations of  Levin's u transform. (8'9~ 

Theoretically, these accelerators should be extremely efficient for sequences 
converging as in (3.4). (8,z~ Table I shows that this does appear to be the 
case and suggests that 

/~c(~/3) = 3/2 (3.5) 

is the exact exponent. 
The other "simple" corners, namely, 0 = 45 ~ and 90 ~ on the isotropic 

square lattice, can be handled in a similar way, the initial configurations of  
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coupling constants being given by (2.8) and (2.9), respectively, with 
K = K e = � 8 9  +V/2) ,  the critical coupling of the square lattice Ising 
model. The results of the acceleration suggest that 

tic(O) = ~r/20, 0 = n/4, ~/3, 7r/2 (3.6) 

This result also reproduces the exactly known (11) surface magnetization 
exponent (~s = 1/2) which corresponds to Bc(TC). 

The same method can be applied to the anisotropic triangular lattice. In 
this case, the required values of mM follow by iterating (2.20) for given M 
from an initial set of homogeneous couplings (K~, K~, K~), where 

sinh 2K~ sinh 2K~ + sinh 2K~ sinh 2K~ + sinh 2K~ sinh 2K~ = 1 (3.7) 

The resulting estimates of/ /c  for the special case K~ = K~ are shown as a 
function of K~ in Fig. 6. The line in this figure is given by 

r = (7r/2) arctan(1/sinh 2K~) (3.8) 

which actually reproduces the limiting estimates to better than four figures. 
The expression (3.8) is also consistent with exponent estimates obtained 

for arbitrary anisotropy. In particular, (3.8) predicts for a 90 ~ corner on an 

3.0 

2.5 

Pc 
2O 

15 

1 
0 0'1 02 0.3 0-/+ 0.5 0-6 

K; 
Fig. 6. Variation of the corner exponent tic with K~ for an anisotropic triangular lattice with 
couplings (K 1 = K3, K2). The points are the numerical estimates while the solid line is given 
by Eq. (3.8). The isotropic result is marked with an arrow. 
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an&otropic square lattice (obtained by setting K 2 = 0, K 1 =K~,  K 3 = K~ 
with sinh 2K~ sinh 2K~ = 1) that tic = 1 independently of the anisotropy. This 
conclusion has been verified numerically for a wide range of anisotropies. 

4. EFFECTIVE ANGLES 

We now present an argument which leads to the formula (3.8). 
Consider again a triangular lattice with arbitrary couplings K~, K 2, K 3 . The 
(bulk) correlations in this system will be anisotropic and in particular the 
three correlation lengths ~ ,  ~2, ~3 along the three axes will be different. From 
the expression for the spin correlation function given by Stephenson (22) one 
finds, for T ~< T c, 

~l'= 2 [ln(tanhKO + arc~ ( S'C2C3 + ] (4.1) 

where C~ = cosh 2Ki, S i = sinh 2K t and r ~3 follow by a permutation of the 
variables. As T approaches To, all ~'s diverge while their ratios go to finite 
limits given by 

~1 : ~2 : ~3 = c o s h  2K~ : c o s h  2K~ : c o s h  2K~ (4.2) 

Thus, increasing one coupling over the others leads to an increase of the 
corresponding correlation length. Note that these ~'s are dimensionless and 
correspond to a unit lattice constant in all three directions. One obtains 
proper physical quantities by setting ~i = ~ia_:i, where ai are the real distances 
between spins. One can then make the ~'s equal by choosing the a's 
according to 

1 1 1 
: (4.3) 

al : a2 : a3 - cosh 2K~ cosh 2K~ : cosh 2K~ 

The correlations ~ are now isotropic, but the three principal directions 
no longer form 60 ~ angles with each other. Denoting the angles opposite to 

oeff  a i by v i , one obtains, from the triangle formed by al ,  a2, a3 

1 1 1 
sin 0] ff" sin 0~ rf" sin 0~ ff= 

�9 " cosh 2K~ : cosh 2K~ : cosh 2K~ 
(4,4) 

It follows that 

A sin _,0 e l f -  (4.5) 
cosh 2K~ 
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where the constant A has to be determined from the sum rule 0 leff ~_ 0~ff ~_ 
~ e f f  3 = 7r. Using the criticality condition (3.7) this leads to A = 1 and (4.5) 
can be rewritten as 

07rf = arctan ( sinhl-2KT ), i =  1, 2, 3 (4.6) 

The 0~ ff are the new angles between the principal directions of  the lattice. We 
shall call them effective angles. A wedge with 0 = 60 ~ in the original system 
has an effective angle 0 elf in the t ransformed one, if K~ is the coupling across 
the wedge. 

If  one now assumes that  in any isotropie system the corner exponent is 
given by the expression (3.5), then it follows immediately that for a 60 ~ 
corner in an (originally) anisotropic system 

7r 

fl~ = 20el f (4.7) 

This is exactly formula (3.8). Using the same reasoning, one can also treat 
larger angles. A wedge with 0 = 120 ~ can be decomposed into two adjacent 
60 ~ wedges. Each of them will be distorted differently under the rescaling, 
leading to two effective angles, say 0] ff and 0~ ff. The corner exponent then is 
determined by their sum 

fl~ --  0]rf + 0~fr (4 .8)  

This case includes again [as (4.7)] the square lattice with a 90 ~ corner, if one 
elf e lf= ~z/2, f rom which sets K 3 = 0. Then 0~ff= ~/2 and consequently 01 + 02 

the already known result tic = 1 follows. A final check is provided by 
treating a 180 ~ corner, i.e., a straight surface. In this case we obtain 

~/2 1 
tic = 0]rf + 0~ff + 0~ff = ~ -  (4.9) 

which is again the well-known result. (m  
The effective angles have a simple physical interpretation. Consider 

again a 60 ~ wedge: By increasing the coupling across the wedge, one couples 
the spins along this direction more strongly together. The system thereby 
becomes more one-dimensional.  The angle 0 elf measures this effect in a 
simple geometric way and leads, via (4.7), to the expected result: tic becomes 
larger and therefore m c decreases, if the temperature  is held fixed with 
respect to To. 
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5. C O N I C A L  LATTICES 

It is possible to convert corners or wedges of the square and triangular 
lattices into conical lattices by identifying the free edges radiating out from 
the corner spin. In many ways these conical lattices are simpler than their 
corresponding corners. One obvious simplification is that only two valences 
(apex and bulk) occur on conical lattices, whereas three valences (corner, 
edge, and bulk) occur on corner lattices. Despite such differences, one 
intuitively expects to see a close similarity between the behaviors of apex 
magnetizations and the corresponding corner magnetizations near the critical 
point. As we shall see this is indeed the case! 

In this section we obtain the apex magnetizations of square and 
triangular conical lattices exactly using corner transfer matrix methods 
introduced by Baxter. ~v'23'24) Following Tsang (25) we define a 2M• 2 M 
corner transfer matrix A, corresponding to the 60 ~ wedge of the triangular 
lattice shown in Fig. 1, with elements 

A(o Io ' )  = O(a 0, c~) Y~ exp H M (5.1) 

Here o = (%, el ..... a~_l )  and o ' =  (cry, a~ ..... a~_l )  are the edge spins, the 
Kronecker delta ensures that the common apex spins a 0 = a/~ match and the 
summation is over all interior spins of the corner. The Hamiltonian H m is 
given by (2.6) with a(m, O)=  cr m, a(m, m ) =  a'm, K l (m ,  0 ) =  0, and all other 
K's independent of m and n. The wedge is thus homogeneous except that the 
bonds on the right edge, as seen from the apex spin, are omitted. If the 
interactions K1, K2, K 3 are arranged as in Fig. 1, we will write 

A = A ( K  1 , K2, K3) (5.2) 

The partition function for a conical lattice built up from a number of 
wedges is 

Z = Tr X (5.3) 

where X is a product of corner transfer matrices and the trace acts to join 
the first and the last edges. Similarly, the apex magnetization is given by 

m a = Tr S X / T r  X (5.4a) 

where 

S(a 1 o '  ) --- Oofi(a0, cr;) fi(aa, a[) ... d (a~_, ,  a~t_ i) (5.4b) 

is the diagonal apex spin operator. Since the corner transfer matrix A breaks 
up into two diagonal blocks corresponding to a o = +1 or - 1 ,  it commutes 
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with the matrix S for any K~, K2, and K 3. For  isotropic interactions 
(K t = K  2 = K  3 = K ) ,  X = A ( K , K , K ) " ,  where n is the number  of  wedges. In 
this case the apex angle is 0 = nzr/3 and the apex magnetizat ion is 

ma(n~/3 ) = Tr SA "/Tr  A" (5.4c) 

where we have exhibited the dependence on the apex angle explicitly. 
The corner transfer matrices of  the triangular lattice have been 

diagonalized by Tsang. (25) To describe her results we parametr ize  the 
interactions as follows: 

cosh 2K i = cnh(2ui,  k), i = 1 ,2 ,3  (5.5) 

Here cnh(u, k ) =  cn(iu, k) is a Jacobian elliptic function ~v) of  modulus k 
given by 

(1 -- t ] ) ( t  - t2)(1 -- t~) (5.6a) 

k = 4[(1 + tlt2t3)(t ~ + t2t3)(t 2 + t3tl)(t  3 + tit2) ] 1/2 

with 

t i = tanh Ki,  i = 1, 2, 3 (5.6b) 

For ferromagnetic interactions ( K I , K z ,  K 3/> 0) the elliptic parameters  ul ,  
u z, u 3 are nonnegative and satisfy the constraint 

ul + u2 + u3 = I ' / 2  (5.7) 

where / ,  I '  are the complete elliptic integrals of  the first kind of moduli 
k, k '  = (1 - k2) 1/2, respectively. Notice that the moduli k, k '  are unchanged 
by permuting the interactions K I ,  K2, and K 3. 

As for the planar lattice, the critical point of  the conical lattices occurs 
when k = 1 or k '  = 0. In the ferromagnetic ordered phase of interest here, the 
moduli lie in 0~<k,  k '~< I. In the disordered phase k>~ 1 so that the 
modulus k is a temperaturelike variable. The parametr izat ion (5.5) is well 
suited to low tempratures  ( k ~  0), but near criticality ( k ' ~  0) it is more 
convenient to use the equivalent conjugate modulus form: 

cosh 2K i = 1/cn(2ui,  k ' )  (5.8) 

The nomes corresponding to k, k '  are 

q = e x p ( - T d ' / I ) ,  t = exp( - -~I / I ' )  (5.9) 

respectively, where 0 ~ q, t ~< 1. At low temperatures q goes to zero and t 
goes to one, whereas at criticality q goes to one and 

t ~  l - - k ~  T - -  Tc, T ~  T c -  (5.10) 
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Let us now introduce the additional variables 

O) i -= ql/4 e x p ( n u J 2 I )  = qO~/Z,~, i = 1, 2, 3 

where 0 ~< 0 i ~< ~/2 and 

n nu i i = 1, 2, 3 
O i -  2 I '  ' 

(5.11) 

(5.12) 

the notation anticipating the identification of 0; at T c with an effective angle 
as in Section 4. Then Tsang (25) shows, using a suitable representation, that in 
the thermodynamic limit (M ~ oo) 

(5.13a) 

and 

where 

A ( K 1 , K 2 , K 3 ) = R ( u a ) D ( o 9 2 ) R ( u 3 )  I (5.13b) 

D(e~)=cons t •  (~ ; ) |  O 3 ) |  O 5 ) |  (5.13c) 

and the R's are orthogonal matrices which commute with S and depend on 
only one of the u's as shown. 

For isotropic interactions ( u i = I ' / 6 ) ,  we see that O i = n / 3  and 
o)f = ql/6. Putting this into (5.13) and (5.4c) we find that 

1 -- q(2r- 1)O/2rc 

ma(O) = ~ 1 ~ q(2r- 1)o/2zt = p2(qO/2,~)/p(qO/~) 
r = l  

where 

(5.14a) 

P(q)---- [~ (I- qZr-~) (5.14b) 
r = l  

and 0 = nn/3  is the apex angle. Clearly, the apex magnetization vanishes at 
criticality (q = 1). Also, setting n = 6, we regain the well-known result (26'27) 
for the bulk magnetization of the planar triangular lattice: 

1 -- q2r-  1 
ma(27r) = ~I 1 + - - ~ i -  ( l - k 2 )  !/a 

r = l  

(5.15) 

with a critical exponent fla(2~z) = 1/8. 
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To obtain the general critical behavior of the apex magnetization, we 
apply the conjugate home transformation (v) 

P(q~) - ~ 2  q~/24 t,/,2e/p(t2/~) (5.16) 

From (5.14), we find that 

(1 -- t (2r- 1)27t/0) 
ma(O) = V/2 t ~/4~ ~ (11 Z t ~  

r = l  
(5.17) 

It therefore follows that near the critical point (t ~ 0) 

m a ( O  ) ~ t ~/40 ~ ( T - -  To )  ~/40, T--at T c - -  (5.18a) 

and hence 

fla(8) = ~r/48 (5.18b) 

with 0 = n7c/3. The fact that the angular dependence of this exponent appears 
in the denominator stems directly from the conjugate nome transformation 
(5.16). 

It is now relatively straightforward to generalize these considerations to 
incorporate anisotropy of various forms. For example, for apex angles 
8 = mr, we can consider the cone 

X =  [A(K1,K2,K3)A(K3,KI,K2)A(Kz,K3,K1)]" (5.19) 

Using (5.4a), (5.11), (5.13)and the fact that 

81 -~ 82 -~ 83 = 7~ (5.20) 

we now obtain (5.14), (5.15), (5.17), and (5.18) with 0--  mz. So in this case 
these results are valid with arbitrary anisotropy. 

Alternatively, if K 1 = K 3 4= K2, we can consider the cone 

X = A (K1,/r K1) n (5.21) 

In this case we have one degree of freedom 02 associated with the anisotropy 
where 

o02 = qO2/2~, 0 <~ 02 ~< n/2 (5.22) 

This time the apex magnetization is given by (5.14) and (5.17) with 0 =  nO 2 
which is k dependent. However, the critical exponent fla is given by (5.18) 

822/37/5-6-2 
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with 0 = nOez rf where 0~ rr is the critical value of O z. But from (5.8) and (5.12), 
setting k '  = 0 and I '  = re/2, we have 

cosh 2K~ = 1/cos 2u~ = 1/sin 0~ ff (5.23) 

which is equivalent to the definition of effective angle given in (4.6). Hence, 
for a single wedge with an effective apex angle 0~ fr, 

More generally, if 

fla = 40~ fr = 4 arctan(1/sinh 2K~) (5.24) 

X 7-- i ]  A (K2i_l, K2i, K2, +1 ) (5.25) 
i=l  

where K2n+l = K  1 and for each i the three interactions K2i_l, K2i , Kzt+l 
satisfy (5.6), then again fla is given by (5.18b) if 0 is the total effective apex 
angle given by 

0~--" + ,oeff (5.26) a..., v2i 
i=1 

The key results (5.t4),  (5.17), and (5.18) also hold for square lattices, 
which are obtained by setting one of the three interactions of  the triangular 
lattice to zero. If  we set K 3 = 0 in (5.6) we see that  the modulus for square 
lattices is given by 

k = (sinh 2K1 sinh 2K2)-1 (5.27) 

For isotropic interactions (K 1 = K 2 - - K )  we can take 

X =A(K ,  O, K)" (5.28) 

or for anisotropic interactions we can take 

X ~- [A(K 1 , 0 ,  K2)A(K2,0, K1)] n/2, n even (5.29) 

In both cases, the effective angle of  each wedge is 0 err = zc/2 and the total 
apex angle is 0 = nzc/2, where n is the number  of  wedges. 

Another  way to obtain the square lattice is to take 

x =  [A(0, K1, K2)A(K2, K,, 0)1" (5.30) 

This corresponds to n 90 ~ corners of  the square lattice where the axes of the 
corners project along the diagonals of  the squares. In this case, the total 
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effective apex angle is 0 = 2n0~ ff SO that the effective angle of each 90 ~ 
corner lies between 0(K~ ~ oo) and zc(Ka ~ 0). For n = 1, this gives 

fla = (5.31) 
8 arctan(1/sinh 2K~) 

6. SQUARE LATTICE IN THE H A M I L T O N I A N  L IMIT  

In this section we return to a usual planar lattice and derive an exact 
expression for the magnetization at a 90 ~ corner. The geometry is shown in 
Fig. 7. In order to simplify the calculation we shall consider the strongly 
anisotropic case (Hamiltonian limit) where K 1 ~ K 2. On the basis of our 
numerical results (Section 3) and the discussion of Section 4 we expect tic for 
this geometry to be independent of the anisotropy and hence unaffected by 
the Hamiltonian limit. The row-to-row transfer matrix V is then given by 
V=exp(-K*~T~'),  where K* is the dual coupling of K z [ tanhK* = 
exp(-2K2) ] and ~g" is the transverse Ising model Hamiltonian 

N N - 1  

~ = - -  ~. a z - - 2  ~ cr~crX+1 (6.1) 
n = l  n = l  

X z Here an, a n are Pauli matrices and 2 - K1/K* is the inverse of the parameter 
k, Eq. (5.27), evaluated for the present case. We shall study the case T~< T C 
which corresponds to 2 ~ 1. We also assume N to be even. 

The corner magnetization can be extracted from the correlation function 
F M between the spins at sites A and A '  

(B I x,r~, ~rlv ol IB) 
/ ' M =  (B  I V ~ [ B  ) (6.2)  

H+I 
A' F H 

K1 

K2 i : 

I 

3 

I 2 A I 
2 3 4 . . . .  N-I N 

Fig. 7. Geometry of the square lattice used to evaluate m c for a 90 ~ corner by the row-to- 
row transfer matrix. Orientations of couplings K 1 and K 2 are shown. 
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where the state vector IB} describes the free summation over the boundary 
spins of the top and bottom row and is given explicitly by 

/B) = 1 JIGS. = + 1 )  + [a x = - 1 ) 1  

N 

= I~ I~ = +1)  (6.3) 
n = l  

Comparison with ~ shows that ]B) is the ground state of ~ f f o r  ,~ = O. 
Therefore F M is formally analogous to the correlation functions one 
encounters in the x-ray absorption problem. (28) The "time" evolution 
involves an operator ~e~(2) which is different from the operator ~ ( 2  = 0) to 
which the initial state belongs. Incidentally, such a relation with the x-ray 
problem also exists for the spin correlation functions in Ising lattices without 
free boundaries. (z9) We also note that one row of horizontal couplings is 
missing from the expression (6,2) since our lattice contains (M + 1) such 
rows. This is, however, a negligible effect in the present limit where K~ ~ 1. 

For large values of M, only the ground state ]0) and the first excited 
state [1) of ~ are important in (6.2). The latter becomes degenerate with 10 ) 

2 in this case. Therefore the for N-~ oo and F~ goes to a finite limit, mc, 
corner magnetization is given, up to a sign, by 

(lla  IB) 
m c -  ( 0 [ B )  (6.4) 

where we have used that 10), IB) are even, while I1) is odd under the 
operator P = ~[n a~,. One now proceeds by writing ~U in terms of fermions 

N - - 1  N - - 1  

~ ' = - -  Z ( 2 c + c , - - 1 )  -)1" ~ (e+--cn)(c++~+c,+l) (6.5) 
n = l  n = l  

and diagonalizes (6.5) by the standard procedure. (3~ The result is, up to 
an additive constant, 

= 2 ~ e(q)a + aq + 2e(p)a + ap (6.6) 
q 

where q takes ( N -  1) values 0 < q < zc and 

e(q) = (1 +~2 + 2)~ cos q)1/2 (6.7) 

The quantity e(p) is of order /I. -u  and therefore vanishes for N o  ~ .  Thus 
the state [0} is the vacuum state of the Fermi operators a and the state I 1} is 
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given by I1> = av + 10>. Finally, the canonical transformation relating the old 
and new Fermi operators is 

c,= ~_ [gk, ctk+hkn a+] (6.8) 
k=q,p 

where g and h, together with some further details, are given in Appendix C. 
We now insert a~ = c~ + + c 1 into (6.4) and use (6.8) together with the 

relations 

%10>=a, 10>=0 

aqll> =0, a ll> = I0> 

This leads to the formula 

m c = ~v(1) + ~ ~q(1)fq 
q 

where ~ = g + h, see (C.8), and 

f q -  (llaq IB} 
<OIB> 

In order to determinefq we follow Abraham (3z) and use the identities 

c ,  + IB> = 0 ,  n = 1,2 ..... N 

in the form 
equations: 

(6.9a) 

(6.9b) 

(6.10) 

(6.11) 

(6.12) 

+ IB} = 0 .  Inserting (6.8) again, this gives the set of  N <11c, 

~ f q h q ,  = - g p , ,  n = 1,2, . . . ,N (6.13) 
q 

Because the functions gqn, hqn are either symmetric or antisymmetric under a 
reflection n ~ N +  l - n  (see Appendix C), the system (6.13) can be split 
into two systems. 

(a) Symmetric functions, N/2 values of q (denoted by q0 :  

N 
Zfqhqn = --gpn, /7 = 1, 2,..., ~ -  (6.13a) 
ql  

(b) Antisymmetric funetions, (N/2 - 1) values of q (denoted by q2): 

N 
~fqhq,, = 0, n = 1, 2,..., ~ -  (6.13b) 
q2 
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Therefore, unless the h a are linearly dependent (which we assume not to be 
the case) (6.13b) leads to f q = 0  for the q2 values and (6.13a) uniquely 
determines the remaining f 's .  

Now we use the explicit form of hq. for the ql values 

1 cos [q(n - L)] 
hqn = -~ Cq cos[qL] (6.14) 

where L = (N + 1)/2 is the coordinate of the centre of the spin chain, and 
form the overlap matrix 

N/Z cos[q(n--L)]  cos[q' (n--L)]  
Sqq, = ,=1 ~ cos[qL] cos[q'L] 

(6.15) 

The result is, after some manipulations, 

zl [ tan(qL)sinq-tan(q'L)sinq'  1, q' (6.16a) Sqq,=--z -  1 + q--/= 
cos q -- cos q' 

1 N + e ( q )  -1 
Sqq= 2 1 +cos(2qL) '  q=q '  (6.16b) 

One can eliminate the quantity L by inserting the relations 

tan(qL) = e(q) + 1 + 2 cos q (6.17a) 
2 sin q 

1 + ~  cosq 
cos(ZqL) = (6.17b) 

~(q) 

which follow from the equations determining the ql values. Then (6.16a) 
becomes simply 

1 1 
Sqq' - 2 e(q) + e(q')' q va q' (6.18) 

In the same way one calculates the overlap of the function gp with hq,, 
leading to 

u/2 COS [q'(n -- L)] 
Gq, : ~ (-- 1)"2-" cos[q'L] 

1 
forN>> 1 (6.19) 

e(q') 
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Equation (6.13a) can therefore be written as 

Z Fq Sqq, = --aq, (6.20) 
ql 

where Fq =fqCJCp. Finally, we take the limit N ~  oo by going over from 
sums to integrals, using N6qq, = 2zc6(q- q'). In this way we arrive at the 
integral equation of Fredholm type 

e(q) (" dq' F(q') 1 
r(q) e(q) (1 + 2  cosq)  t-)0 - (6.21) --  7r e (q)  + e ( q ' )  7cg(q) 

In terms of F(q) the corner magnetization is then given as 

l, + 
Equations (6.21) and (6.22) contain the solution of the problem. It remains 
to determine F(q) from the integral equation. While a closed form solution is 
hard to obtain, one can easily find F(q) as a power series in 1/2 by 
expanding all quantities in this parameter. This corresponds to a low- 
temperature expansion of mc. The first approximation is, for example, 

1 (1 -- cos q) F(q) = -- -~ 

In this way one finds, through order 1/23 

( 1)( 
m e =  1 - 2 ~ -  ~ l - - X - + -  

= 1 - - ] - - +  O 

From this one suspects that 

1 
m e =  l - - ~ -  

(6.23) 

i 1) 
2)t 2 2~. 3 

(6.24) 

is the exact result to all orders. This result for m C is also supported by direct 
numerical calculations based on (6.13a) and (6.10). Thus we have found a 
very simple law for m c and, at the same time, confirmed the value tic = 1 for 
a 90 ~ corner in this highly anisotropic lattice. 

Finally, let us compare this result with the formulas for the surface 
magnetization. They can be obtained either from the general expressions of 
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McCoy and Wu m) or also directly within the present Hamiltonian 
approach. For example, to obtain m s on a horizontal surface, one does the 
same calculation as above, but with a cyclic Hamiltonian. This leads to some 
interesting changes caused by the translational invariance. The equations 
analogous to (6.13) in this case do not specify all necessary matrix elements 
since one of the functions hq is zero. At the same time, however, the states 
10) and I1) are simple product wave functions of BCS type so that the 
remaining matrix elements ( l l a  ~ [B) and (01B)  can be evaluated directly. 
The result is 

ms, h = (1 -- 1/~) ~/2 (6.25) 

On the other hand, for a spin on a vertical surface, one simply has to replace 
IB) by I0) in (6.4) and finds (31) 

ms, v = (1 - -  1 / ~ . 2 )  1/2 (6.26) 

Both laws are not identical since in the first case the couplings in the surface 
are weak, while in the second case they are strong. However, as for the 
corner magnetization, the critical exponent fls = 1/2 is not affected by the 
anisotropy. 

7. S U M M A R Y  A N D  C O N C L U S I O N  

In this paper we have used a variety of methods to study the critical 
behavior of the corner or apex magnetization of two-dimensional Ising 
models in wedge-shaped domains. The domains either have free edges or are 
wrapped on a cone (conical boundary conditions). The main conclusions of 
this work are as follows: 

(i) for isotropic systems with free edges 

tic = ~/20 (7.1) 

where 0 is the opening angle of the wedge; 

(ii) for isotropic conical lattices 

fla = n/40 (7.2) 

(iii) for an anisotropic triangular lattice these results remain valid with 
0 replaced by 

0err= arctan(1/sinh 2K~) (7.3) 
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where K z is the coupling across the wedge or cone (recall Fig. 1). For  
conical lattices these results were established analytically by the use of  
corner transfer matrices. For free edge conditions (7.1) is a conjecture, albeit 
one that is impressively supported by numerical  calculations. 

The most  striking features of  these results is the ubiquitous ratio 

,6'c :,B,, = 2 : 1 (7.4) 

for which we have no explanation. In this connection, a compar ison of the 
temperature dependences of  the corner and apex magnetizat ions is 
interesting. This is done in Fig. 8 for a 90 ~ corner in an isotropic square 
lattice. Rather  surprisingly m a is less than m e except near T c, whereas 
naively, on the basis of  the Griffiths '  inequalities, (33) one might expect ma to 
exceed m C at all temperatures.  The reason for this behavior  is, however, easy 
to understand. Closing the free wedge onto itself only yields the 
homogeneous conical geometry if interactions along the boundaries of  the 
wedge are halved. I f  this is done, the resulting magnetizat ion (see Fig. 8) 
does indeed lie below the cone result. Such a modification of  the interactions, 
apparently,  does not affect the exponent tic, a conclusion we have confirmed 
by the numerical methods of Section 3. 

Our discussion in Section 4 of  the decay of correlations in anisotropic 
lattices helps to unravel the way the anisotropy enters explicitly into the 

10 

0"8 \ . "~ 

0"6 \ \  "~..~ "~. ~ 

~ . ~  

0-~- \ , 

0-2 \ \ \  " , 

0 0-2 0-/~ 0"6 0'8 1"0 

TITc 
Fig. 8. Comparison of corner magnetization for 90 ~ wedge with free boundaries ( ) 
conical boundary condition (-. - - .  ), and free boundaries with the edge coupling reduced by a 
factor of 2 ( - - - ) .  
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magnetization exponents. This mechanism is the same as Cardy (1) 
conjectured would occur for a continuum field theory. The necessary 
rescaling to recover an isotropic lattice in general distorts angles. 

No distortion occurs for 0 = n  where f l c=f l s= 1/2, or for 0 = n / 2  
where tic = 1 provided in this case the 90 ~ angle is constructed with the edges 
along lattice vectors of a square lattice. However, if one rotates the wedge so 
that the axes project along the diagonals of the square, the exponent should 
depend upon the anisotropy. While we are unable to probe this geometry 
directly with free edges, it can be handled with conical boundary conditions; 
the resulting expression for fla being given in (5.31). Assuming that (7.4) is 
valid implies for free edges that 

~r 

tic = 4 arctan(1/sinh 2K~) 

K 1 being the coupling across the wedge. 
Finally, it should be noted that setting 0 = 27r for a wedge with free 

edges does not yield the bulk magnetization exponent. Instead, we obtain a 
lattice with a "cut" in it and fl~(2z~) = 1/4. 

Our calculations could be extended in several directions. Conical 
lattices could be considered for the eight-vertex model again using corner 
transfer methods. We have noted that the corner exponent does not appear to 
be affected by modifying the interaction in the edge. More complex 
inhomogeneities in which the couplings approach their bulk values only as 
one moves away from the edge and/or the corner could have more drastic 
effects as seen in the surface case. ~5'6) The star-triangle recursion method of 
Section 3 may be able to handle this case, but these possibilities are beyond 
the scope of this paper. 

APPENDIX A: STAR-TRIANGLE TRANSFORMATION 

The star-triangle transformation is illustrated in Fig. 3a. Summing over 
the configurations of the spin at the central node of the star gives 

Ki = F(Pi,  P j, Pk), (i, j ,  k) cyclic (a.  1) 

where 

F(p,  p ' ,  p " ) =  @In  [[ cosh(p c ~  7 P-~7) ~ +  p '  + p")  cosh(--p_~+p_7 p '  --~7~ + P")Ij (A.2) 

and we have suppressed the spatial dependence of the K's and p's. To obtain 
the inverse transformation, Pi = Pi(K1, KE, Ka) define ~3) (i, j ,  k, cyclic) 

u i = sinh 2Kj sinh 2K k, v z = 1/sinh 2pj sinh 2pk (A.3) 
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then the star-triangle transformation becomes ~3) 

v i = kZ(u)ui ,  u i = kZ(v)vi (A.4) 

where 

k - 2 ( x )  = x~ + x~ + x] + 2 x l x z x  3 + 2[(x 1 + XzX3)(x2 + X3Xl)(X 3 71-XlX2) ] 1/2 

(A.5) 

and 

Hence from (A.4) 

kZ(u) = k -2 (v )  (A.6) 

sinh 2pi = k - l ( u ) / s i nh  2Ki (A.7) 

Since we wish to allow for zero couplings, it is computationally advan- 
tageous to define 

Yi = e-2m (A.8) 

where from (A.6) 

Yi = 
k(u) sinh 2K i 

1 + [1 + k2(u) sinh z 2Ki] 1/2' 
i =  1, 2, 3 (A.9) 

This equation together with (A.2) form the basis of our iteration of (2.13) 
and hence (2.20) for m M. 

APPENDIX  B: CONVERGENCE ACCELERATORS 

In this appendix we define the convergence accelerators used in 
Sections 3 and 4. A convergence accelerator for a given sequence {f~0) N0 } n = 0  

consists ~8) of a (nonlinear) transformation of the sequence to yield a new 
sequence Jr(1)~ul such that I J n  J n ~ 0  

lira f~0)= lira f~ l )=foo  (B.1) 
n --,oo n --*oo 

and 

lim f~176 
n-,~ foo - - f (~  = 0  (B.2) 

In principle further acceleration can be achieved by reapplying the 
accelerator to {f(n 1)} to obtain {f~2)} etc. In practice, the number of iterations 
is limited by two factors: 



524 Barber, Peschel, and Pearce 

(i) N 1 < No, so that each application reduces the number of terms 
available; 

(ii) round-off error tends to build up due to the finite precision 
arithmetic of a computer. 

The three accelerations used in this paper are defined as follows: 

(i) 0 algorithm ~8'1~ 

Otnk) = O~ k- '' + 1/Af(. k, (B.3a) 
f(k+t) ,'(k) A t'(k) AO(k) /fl2fI(k) (B.3b) 

n ~ J n + ~  q-~d n + l  ~ V n + l l ~  ~n 

with 0~ -1) = 0; 

(ii) alternating e algorithm~2~ 

E(2k+ 1) __ ty e ( 2 k -  1) n - - ~ k O n  + 1/de(n zk) 

e(Zk+2)  ~(2k) _~ 1/AC(n2.k+ 1) 

with e~ -1) = O, _(o) = % =f~o), and a k [ ( _ ) k _  1]/2; 

(iii) U transform(8'9): 

f (nk)  k (0) (k) k (k) =A ( f ,  C, )/fl C, 

= n 1/nZf o  

where, in (B.3)--(B.5), 

(B.4a) 

(B.4b) 

(B.4c) 

(B.5a) 

(B.5b) 

Ax, = x , +  1 - x ,  (B.6) 

APPENDIX C 

To diagonalize ~'r in Eq. (6.5) one has to find the eigenfunctions of the 
(N • N) matrix 

1 +X2 2 

(A - B ) ( A  + B ) = 4  " ' .  (C.1) 

2 
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where we follow the notation of Lieb, Schultz, and Mattis. ~3~ The wavelike 
solutions are 

[cos(qn) 1 + 2  cosq sin(qn)] Oq(n)=Cq (C.2) [ ] 2 sin q 

where the q values follow from 

sin[q(N+ 1)] _ 2 (C.3a) 
sin(qN) 

or, equivalently, from 

;~ sin q 
-- (C.3b) tan[q(N+ 1)] 1 +)l. cos q 

and Cq is the proper normalization factor. For ,a, > 1 there is, in addition, an 
oscillating exponential solution 

Op(n) = Cp(-1)n[e -v" - ep(n- 2N- 2) ] (C.4) 

where, for N--, oo, e p = 2  and Cp = (2 2 - 1 )  1/2 

In addition to the functions 0 one needs the functions qJ, which are the 
eigenfunctions of (.4 + B)(A - B ) .  They are simply related to the O's since 
( A + B ) ( A - - B )  is obtained by a reflection n + N + l - n  from 
( .4-B)(A +B). It is convenient to distinguish two kinds of q values, 
namely, 

(a) Solutions of (C.3) with sin(qN) > 0 (ql values): 

Then ~q(n) = -Ov(N+ 1 - n )  

(b) Solutions of (C.3) with sin(qN) < 0 (q2 values): 

Then ~q(n)=+Oq(N+ l - - n )  

For N even, also the p state belongs to this class 

 An)=+0AN+ a-n)  

The functions g, h in (6.8) are given by 

gkn = �89 [0k(n) + ~k(n)] 

hk, = k [0~(n) -- ~'k(n)] 
k = q , p  

(c.5) 

(C.6) 

(C.7) 

(C.8a) 

(C.8b) 
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Therefore in class (a) g is antisymmetric and h is symmetric, while in class 
(b) the symmetries are interchanged. Note the special cases 

1 
0"(I)  = -- T c~  

1 -  

which appear in the expression (6.10) for m~. The expression (6.14) for hqn 
is easily derived from (C.2) and (C.5). 

NOTE ADDED IN PROOF 

It is possible (Barber, unpublished; Cardy, to be published) to relate the 
corner exponents to standard surface exponents by the use of the conformal 
invariance of correlation functions at criticality. This argument predicts that 

= 

which is consistent with our result (3.6). The surface exponents in turn can 
be expressed (Cardy, to be published) in terms of the bulk correlation length 
exponent v. Explicitly, his results are /~1 = v / ( 3 v -  1) for the q-state Pott's 
model (0 < q < 4) and fll = v(2v + 1)/2(4v - 1) for O(n)-models (0 ~< n < 2). 
The resulting prediction of the corner exponents for n = 0 has been 
confirmed by a direct study of self-avoiding walks in two-dimensional 
wedges (Guttmann and Torrie, to be published; Cardy and Redner, to be 
published). 

A similar application of conformal invariance predicts (Cardy, private 
communication) that the apex magnetization exponent is given by 

~ = (2zc/O)fl 

so that tic : fla = fll : 2fl, which yields (7.4) in the Ising case. 
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